Code: 20EE6501

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

DISTRIBUTED GENERATION AND MICROGRIDS (HONORS in ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
					Marks			
UNIT-I								
1	a)	Explain the management and operational	L2	CO1	6 M			
		issues of a microgrid.						
	b)	Discuss the concept of microgrid. Show the	L3	CO2	8 M			
		key differences between microgrid and						
		conventional power plant.						
OR								
2	a)	Discuss the technical and economic	L2	CO1	8 M			
		advantages of microgrid.						
	b)	Interpret the concept of active distribution	L3	CO2	6 M			
		network.						
		UNIT-II						
3	a)	Interpret about micro CHP systems with	L3	CO2	8 M			
		emphasis on Stirling engines.						
	b)	Explain about any three types of PV cells.	L2	CO1	6 M			
OR								

	1		1	, , , , , , , , , , , , , , , , , , , 					
4	a)	Interpret about micro CHP systems with	L3	CO2	8 M				
		emphasis on micro turbines.							
	b)	Interpret how energy is stored using	L3	CO2	6 M				
		flywheel and ultra capacitors.							
UNIT-III									
5	a)	Explain about any three power quality	L4	CO3	6 M				
		disturbances.							
	b)	Discuss about any two power conditioning	L2	CO1	8 M				
		technologies.							
OR									
6	a)	Explain about Secondary DG system with	L4	CO3	8 M				
		power quality support.							
	b)	Explain the issues with premium power in	L4	CO3	6 M				
		DG integration.							
UNIT-IV									
7		Explain in detail about basic microsource	L4	CO4	14 M				
		control functions.							
		OR							
8		Explain about the protection scheme for	L4	CO4	14 M				
		grid – connected mode.							
UNIT-V									
9	a)	Interpret the concept of islanding with the	L3	CO5	8 M				
		help of any two scenarios.							
	b)	Explain about emerging economic issues in	L2	CO1	6 M				
		Microgrids.							
	OR								
-									

10	a)	Interpret microgrids economics and	L3	CO5	8 M
		traditional power system economics.			
	b)	Interpret protection of microsources in	L3	CO5	6 M
		microgrids.			